Very Forward Instrumentation of the ILC Detector

On behalf of the

Wolfgang Lohmann, DESY

New Members

Univ. of Colorado, Boulder,
AGH Univ., INP & Jagiell. Univ. Cracow,
JINR, Dubna,
NCPHEP, Minsk,
FZU, Prague,
IHEP, Protvino,
TAU, Tel Aviv,
DESY, Zeuthen

'Old' Kernel

"Vinča" Institute of Nuclear Sciences, Belgrade Royal Holloway, London, BNL, Brookhaven, NY, LAL, Orsay Yale Univ.

Goal-Design and R&D for:

- BeamCal
- GamCal
- LumiCal

January 2007

BNL Instrumentation

see: PRC R&D 01/02 (2002)

The ILC Detector, e.g. GLD

Simulations, Design and Functions

BeamCal and LumiCal (Example LDC, 20 mrad):

- design relatively advanced
- precise (LumiCal) and fast (BeamCal) luminosity measurement
 - hermeticity (electron detection at low polar angles)
- mask for the inner detectors

GamCal

EM Calorimeter
130 m downstream

- design work ongoing detect the flux of photons by converting 10^{-6} of the intensity (Gas-Jet target)
- detect 'wrong sign' e⁺⁻, number and spectrum correlated with the photon intensity and energy distribution

Measurement of \mathcal{L}

Bhabha events

From theory

Goal: Precision ~10-4

	Min	Max		
R	~10 cm	~25 cm		
θ	33 mrad	80 mrad		

Requires theoretical cross-section with the necessary precision; contacts to theory groups in Zeuthen, Cracow, Katowice theory groups (two loop calculation)

Θ, (rad)

< 0.7 mm

Radial beam position:

Mechanical Frame and Alignment

Decouple sensor frame from absorber frame

Alignment and position control using Laserbeams

Occupancy

LumiCal

Remnant background from Beamstrahlung

+background from two photon events (under work)

+ Bhabha signal

Fig.3 Average channel occupancy per train for pure Bhabha events

LumiCal, present understanding

Maximum peak shower

- 10 cylinders (θ)
- \bullet 60 cylinders (θ)

Every second ring:

Parameter	Pad Performance	Strip Performance	
Energy resolution	25%(√ <i>GeV</i>)	25% (√ <i>GeV</i>)	
θ resolution	3.5 * 10 ⁻⁵ rad	2.1 * 10 ⁻⁵ rad	
φ resolution	10 ⁻² rad	10 ⁻³ rad	
Δθ	~ 1.5 * 10 ⁻⁶ rad	~2.1* 10 ⁻⁷ rad	
Electronics channels	25,200	3720 (with bonding sectors) 13,320 (without bonding)	

BNL Instrumentation

BeamCal

Background suppression in search channels, e.g.

Similar signatures, Two photon cross section much larger

Number of unvetoed 2-photon events:

Veto Energy Cut, GeV	75	50
Nominal	45	5
Low Q	40	0.1
Large Y	50	9
Low P	364	321
Nominal, 20mrad	396	349

BeamCal

Determination of beam parameters from beamstrahlung depositions on BeamCal:

Quantity	Nominal	Drocioion	
	Value	Precision	
σχ	553 nm	2.9	
σу	5.0 nm	0.2	
σΖ	300 μm	8.5	

Question: how many sensor planes are really needed?

Seems sufficient to read out a few planes only (around $10 X_0$)

Full GEANT4 simulation: Parameters: σ_x and σ_v

BeamCal & GamCal

Combine informations from pairs and photons (B. Morse)

GamCal &LumiCal

Ratio of energy depositions in BeamCal and GamCal:

Almost proportion al to the Luminosity !!!

Readout Electronics Requirements

Readout- the challenges

e.g. BeamCal (LumiCal similar):

- 5 bunch trains per second (5 Hz)
- 3000 bunches within one train
- One bunch every 300ns, 150ns possible
- -Each bunch to be registered
- O(10000) channels
- High dynamic range (1:10k)
- 10 bit ADC
- Data per train ~1 Gb (transmission during train ~1 Tb/s, during break ~3 Gb/s)
- Radiation hardness to be considered
- Compact detectors: low power & little space

Digitization

January 2007

BNL Instrumentation

Digitization

Signal Size

Assume: pad (cell) size ~ 0.8 R_M, Si

And other sensors (CVD D., GaAs)

Expected signal per cell (Nominal)

- depends on the accelerator parameters
- Sensor material

Signal Size

Sensor	efficiency charge coll.	thickness	ε _{R,} pF	C _{Det}	Q _{low} = 10 MIP	Q _{high} = 10 ⁴ MIP
Si	100 %	300 µm	11.9	19.3 pF	36.9 fC	36900 fC
pCVD diamond	50 %	300 µm	5.7	9.25 pF	8.7 fC	8700 f <i>C</i>
GaAs	62.5 %	300 µm	12.9	20.9 pF	40.1 fC	40100 f <i>C</i>

Detector capacity calculation based on: average cell size of 0.55 cm² (compare to slide 2)

Note that this does not include any signal routing!

In LumiCal: signal range from 1 fC (0.25 mip) up to 15 pC

A possible scheme

Test-beam studies

Energy of shower electrons inside the sensor:

Radiation hard against electromagnetic radiation in the 10 - 100 MeV range!

Beams available:

SDALINAC (TU Darmstadt)

JINR LINAC 800

20-40 MeV Rooms FELA FEL3 $0.15-1.2 \mu m$ FEL1 1-6 um infrared Intector FEI with bunch 5-30μ Operation in fall 2007 compressor

beam currents from 1 to 100 nA (10 nA \approx 50 kGy/h)

The testbeam setup

exit window of beam line

collimator (I_{Coll})

Faraday cup (I_{FC}, T_{FC})

sensor box (I_{Dia}, T_{Dia}, HV)

Results from 2006 (DALINAC) Si and diamond sensors:

Si pad sensor

Diamond sensor after ~7 MGy

Plans for 2007/2008

- Repeat measurements with new diamond samples
- Measurements with lower dose rates
- Test alternative sensor materials
 - GaAs (produced by Russian Collaborators)
 - SiC (collaboration with BTU, Cottbus)
 - Rad. hard Si (BNL?)

GaAs Segment prepared for tests

Linearity and dynamic range

CERN PS (CMS)

Energy (mixed beam): few GeV 10^3 - 10^6 particles in ~10 ns Test of several diamond sensors, 1 cm^2 area, 500 μ m thick, Results reasonable

Plans 2009/10

- -Repeat and refine previous measurements (better flux calibration)
- -Study new sensor materials

Compactness

Goal:

Thin instrumented sensor plane prototypes (< 1mm thickness)

- Function test of assembled sensor planes,
- Channel-to-channel homogeneity,
- Cross talk,
- Performance at the edges.

Plan 2007/2009 Use a few GeV electron beam at DESY, EUDET infrastructure

Prototype Calorimeter Tests

Finally prototypes of BeamCal and LumiCal must be tested in a beam to proove the performance of the full system

Plan, not before 2010: Test in an electron beam of ~100 GeV at CERN or Fermilab

prototype of GamCal

Plan: ~2009 (??) 1-20 GeV electron beam, SLAC? High (100 GeV) beam for background studies

Summary

- R&D for the very forward region is independent from the detector concepts
- From similations: Design of BamCal and LumiCal relatively advanced, GamCal is coming up
- Mechanics design first ideas
- Integration in the detector to be done later
- •Radiation hard sensors not yet settled;
 - we consider 'backup materials', like special silicon and GaAs
- Read-out electronics will be a challenge
 - -different from 'standard' calorimeters, fast digitisation and processing, large amount of 'raw data'

Effort on hardware developments is just increasing